Tag Archives: obesity

Now Published: The Geography of Happiness

Today we’re pleased to announce that our article “The Geography of Happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place” has been officially published by PLoS ONE.  We wanted to tell you about one key piece we’ve added to the paper and an unusual new Twitter account we’ve created.

After our three blog posts (which coincided with the release of the preprint), we received plenty of media attention, as well as some fantastic feedback from readers (thanks!). One very important question kept coming up: “How well does happiness agree with other measures of well-being?”, or more simply: “Why should we believe you?”

Well, we’re glad you asked.  For the final paper, we’ve added a US state-level comparison between our happiness measure and five other kinds of well-being indices:

  • the Behavioral Risk Factor Surveillance Survey (BRFSS)  for which people were asked to rate their life satisfaction on a scale of 1 to 4 (the BRFSS was explored in this Science paper on well-being from a few years back);
  • Gallup’s health survey-based well-being index;
  • the Peace Index, which aggregates various crime data;
  • the America’s Health Ranking, which aggregates health data; and
  • gun violence, specifically the number of shootings per 100,000 people.

In the figure below, we show a series of scatter plots comparing all pairs of well-being metrics  (happiness runs along the top row).  Each dot represents a US state, and the colors represent strength of correlation or agreement between measures, with blue meaning strong agreement, and red representing no (statistically significant) agreement. (We include the exact Spearman correlation coefficienr and p-value in each scatter plot.)

happinessScatterMatrix1

Scatter matrix showing comparison between different well-being metrics for all US states. The top row shows comparisons with happiness. Colors indicate the strength of correlation between pairs of metrics; shades of blue indicate increasingly significant correlation.

Looking at the top row, we can immediately see that happiness agrees with all measures except for the BRFSS. However, the BRFSS itself doesn’t agree with any other measure except for the Gallup well-being index.  The most striking departure was the BRFSS ranking Louisiana as the happiest state whereas our happiness measure placed it last.  There are a number of possible explanations for these disagreements: one is that the BRFSS data was taken between 2005 and 2008, while all other data is from 2011 only; another is that unlike the other measures, happiness is self-reported in the BRFSS. How would you answer if asked how happy you are? Do you expect that your answer is representative of the population you live in at large? There are certainly many different ways to define “happiness”, as a number of different readers have pointed out.

Of course, this is not to criticize the BRFSS (it remains a significant data source, and Oswald & Wu did fine work analyzing it in their Science paper), but merely to suggest that our word happiness score is measuring something different but perhaps complementary to traditional survey-based techniques. There certainly appears to be plenty of value to observing people “in the wild” via social network data, e.g. with the real-time instrument hedonometer.org.

Finally, to celebrate the publication of our article we created a Twitter feed, @geographyofhapp, dedicated to tweeting the happiest and saddest city every day, and we invite you to follow.  We’re hoping that this is the first research article with its own Twitter account, but perhaps not hoping that it represents the future of scientific publishing…

Leave a comment

Filed under geohappiness, mathematics, psychology, social phenomena

The Twitter Diet

How does food (or talking about food online) relate to how happy you are? This is part 3 of our series on the Geography of Happiness. Previously we’ve looked at how happiness varies across the United States (as measured from word frequencies in geotagged tweets), and then at how different socioeconomic factors relate to variations in happiness. Now we focus in on one particular important health factor that might influence happiness, obesity.

We looked at how happiness varied with obesity across the 190 largest metropolitan statistical areas in the United States, giving us the following scatter plot:

happinessObesity

Each point represents one city; for example the city with both(!) lowest obesity and greatest happiness in this set is Boulder, CO, located at the top left. The red line is a linear trend through the data (a line of best fit). Again, for the mathematically minded onehappybird watchers, we show the Spearman correlation coefficient and its corresponding p-value at the lower left. We do this to convince you that there is, in fact, a statistically significant downward trend in the blob of points in the picture! The big story here is of course that as obesity goes up, happiness goes down.

The natural next question to ask is: are there any words which could be indicators of obesity? What foods are people in obese cities eating, or talking about? To answer this question we correlated word frequencies with obesity, and searched for the most strongly-correlating food-related words. Below are two examples: on the left, “mcdonalds”, and on the right, “cafe”.

cafeMcDonalds

As obesity goes up, so does talk (at least on Twitter) about McDonalds, but talk about cafes follows the opposite trend! Does that mean that in order to lose weight we should spend more time sipping lattes in cafes? I wish.

Looking through the list of words, the top 5 food-related words that increase in frequency as obesity went up were:

  1. mcdonalds
  2. eat
  3. wings
  4. hungry
  5. heartburn

We were surprised by ‘hungry’! On the other hand, the top food-related words which were used more as obesity went down were:

  1. cafe
  2. sushi
  3. brewery
  4. restaurant
  5. bar

Perhaps unsurprisingly, these are words typically used by the high-socioeconomic group described in our previous post on city happiness, suggesting that better health correlates with higher socioeconomic status. You can find the complete list of how all words correlate with happiness here (page best viewed using Google Chrome). One surprising result was the observation that far more food-related words appeared in the low-obesity group than in the high-obesity group; in other words, food was being talked about more in the less-obese cities!

Summarizing: based on word usage, the Twitter diet consists of: breakfast at your favorite cafe, a delicious sushi lunch, dinner out at a fancy restaurant, with a nightcap at the best local bar or brewery. Thank you Twitter, don’t mind if I do.

All jokes aside, this sort of technique has great potential. Imagine being able to predict whether obesity was going to rise or fall in a city, or estimate changes in other demographics, just by analyzing the words people use online. Perhaps New York City Mayor Michael Bloomberg would find some early indicators of the success or failure of his war on soda!

And that’s all for this series of posts on the geography of happiness. More information on all of the results in this series can be found in our recently submitted arxiv paper. Please take a look at it and the accompanying online appendices, where you can look through all of the data yourself. As a special bonus feature, you can check out this video of me talking about this work at our recent TEDxUVM conference.  Thanks for reading!

4 Comments

Filed under mathematics, psychology, social phenomena